Sentiment Analysis of KAI Access App Customer Reviews to Improve Customer Service Using Natural Language Processing

Authors

  • Dwi Andre Vebriansyah Universitas Negeri Malang
  • Niluh Komang Kusuma Yasari Universitas Negeri Malang
  • Daris Itsar Samudra Universitas Negeri Malang
  • Titis Shinta Dhewi Universitas Negeri Malang

DOI:

https://doi.org/10.61132/rimba.v3i2.1751

Keywords:

Customer Relationship Management, KAI Access, Latent Dirichlet Allocation, Natural Language Processing, Sentiment Analysis, Service Quality

Abstract

This research analyzes user sentiment reviews of the KAI Access application from Google Play Store to improve customer service at PT Kereta Api Indonesia. The study uses a Natural Language Processing (NLP) approach with the Latent Dirichlet Allocation (LDA) algorithm to extract main topics from 10,000 reviews collected from April 2024 to April 2025. Analysis results show 40.7% positive sentiment reviews and 49.3% negative. After data preprocessing through case folding, normalization, tokenization, stopword removal, and stemming, seven optimum topics were found from negative sentiment with a coherence score of 0.508343 and two optimum topics from positive sentiment with a coherence score of 0.511673. Analysis based on five service quality dimensions (tangibles, reliability, responsiveness, assurance, and empathy) reveals that the reliability dimension becomes the main issue, including system instability, transaction failures, login difficulties, and data inaccuracy. The responsiveness dimension is the second priority, with users expecting fast and responsive service to complaints. The results of this study provide recommendations for PT KAI to prioritize improvements in system reliability and responsiveness aspects to enhance the overall user experience, which will ultimately impact customer satisfaction and loyalty.

 

 

Downloads

Download data is not yet available.

References

Akbar, H. M., Az-Zahra, H. M. & Prakoso, B. S., 2023. Analisis Pengalaman Pengguna pada Aplikasi Mobile KAI Access menggunakan Metode User Experience Questionnaire (UEQ) dan Usability Testing (Studi Kasus: PT. KAI). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, VII(7), pp. 3537-3547.

Alim, S., Hariyanto, A. & Nugroho, N., 2021. APLIKASI CUSTOMER RELATIONSHIP MANAGEMENT MENGGUNAKAN PENDEKATAN FRAMEWORK OF DYNAMIC (STUDI KASUS: PT BINTANG KHARISMA MOTOR BANDAR LAMPUNG). JDMSI, II(1), pp. 10-17.

Campbell, J. C., Hindle, A. & Stroulia, E., 2015. Latent Dirichlet Allocation: Extracting Topics from Software Engineering Data. The Art and Science of Analyzing Software Data, pp. 139-159.

Dewi, L. E. & Sundiman, D., 2023. Development of Sharing Economy Business Model for Company Sustainability: A Case Study on Gojek. Binus Business Review, XIV(1), pp. 29-38.

Dewi, M. S. W., Nabila, S. & Hilaly, S. G., 2023. Analisis Kepuasan Pengguna terhadap Kualitas Layanan Portal Layanan Mahasiswa (POLAM) Menggunakan Metode Servqual. JURNAL TEKNOLOGI DAN SISTEM INFORMASI, IV(2), pp. 198 - 2027.

Dhammananda, J., Budi, I. & Santoso, A. B., 2023. Sentiment Analysis and Topic Modeling of E-Grocery Application Reviews Using Naive Bayes and Support Vector Machine: A Case Study of Segari Data Review on the Google Play Store. 3rd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), pp. 13-18.

Farida, T., 2016. PENGARUH CUSTOMER RELATIONSHIP MANAGEMENT DAN KUALITAS LAYANAN TERHADAP KEPUASAN DAN LOYALITAS INVESTOR PT DANAREKSA MEDAN. Jurnal Ilmiah Manajemen dan Bisnis, XVII(1), pp. 101-124.

Gunawan, S., 2022. ANALISIS KUALITAS LAYANAN PENGGUNA WEBSITE E- LEARNING DENGAN METODE SERVQUAL (STUDI KASUS SPADA DIKTI PROGRAM KAMPUS MERDEKA). MDP Student Conference, II(2), pp. 526-537.

Merawati, N. L. P., Amrullah, A. Z. & Ismarmiaty, 2021. Analisis Sentimen dan Pemodelan Topik Pariwisata Lombok Menggunakan Algoritma Naive Bayes dan Latent Dirichlet Allocation. JURNAL RESTI (Rekayasa Sistem dan Teknologi Informasi) , V(1), pp. 123-131.

Patmawati & Yusuf, M., 2021. Analisis Topik Modelling Terhadap Penggunaan Sosial Media Twitter oleh Pejabat Negata. Building of Informatics, Techonlogy and Science, III(3), pp. 122-129.

Rahmawati, A., Nikmah, N. L., Perwira, R. D. A. & Rakhmawati, N. A., 2021. Analisis Topik Konten Channel Youtube K=POP Indonesia menggunakan Latent Dirichlet Allocation. Ilmiah Sistem Informasi, I(11), pp. 16-25.

Ranataru, S. L. & Trianasari, N., 2024. Analisis Sentimen Media Sosial Terhadap Aplikasi Perbankan untuk Mengetahui Kepuasan Pengguna Aplikasi: Studi Kasus pada Livin by Mandiri dan BCA Mobile. Al-Kharaj: Jurnal Ekonomi, Keuangan & Bisnis Syariah , VI(9), pp. 6818-6838.

Sholikhah, A. F. & Hadita, 2023. PENGARUH KUALITAS LAYANAN, KUALITAS PRODUK DAN HARGA TERHADAP LOYALITAS PELANGGAN MELALUI KEPUASAN PELANGGAN MIE GACOAN DI BEKASI TIMUR. JURNAL ECONOMINA , II(2), pp. 692-709.

Wulandari, E. A. & Fanida, E. H., 2023. KUALITAS LAYANAN APLIKASI KAI ACCESS OLEH PT KERETA API INDONESIA (PERSERO) (STUDI KASUS PADA PELANGGAN KERETA API LOKAL PENATARAN DHOHO DI STASIUN BLITAR DAOP VII). Publika, XI(3), pp. 2137-2150.

Downloads

Published

2025-05-16

How to Cite

Dwi Andre Vebriansyah, Niluh Komang Kusuma Yasari, Daris Itsar Samudra, & Titis Shinta Dhewi. (2025). Sentiment Analysis of KAI Access App Customer Reviews to Improve Customer Service Using Natural Language Processing. Jurnal Rimba : Riset Ilmu Manajemen Bisnis dan Akuntansi, 3(2), 192–205. https://doi.org/10.61132/rimba.v3i2.1751

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.