Leveraging the RFM Model for Customer Segmentation in a Software-as-a-Service (SaaS) Business Using Python
DOI:
https://doi.org/10.61132/maeswara.v2i5.1283Keywords:
Amazon, AWS, RFM Analysis, SaaS, SegmentationAbstract
Customer segmentation plays a pivotal role in driving marketing strategies and improving customer retention across various industries. This study explores the application of the RFM (Recency, Frequency, Monetary) model for customer segmentation in a Software-as-a-Service (SaaS) business, using Python for efficient data processing and analysis. By analyzing one year of customer purchase data, we segmented customers into key groups such as "Champions," "Loyal Customers," and "At Risk." The results highlight that targeted discount strategies significantly affect profitability, especially for high-value customer segments. Furthermore, the research builds upon existing methodologies, demonstrating how Python-based implementations streamline RFM analysis and allow for scalable solutions in business contexts, as illustrated in prior works by Hermawan et al. (2024). This study offers actionable recommendations, including tailored discounting, loyalty programs, and personalized engagement strategies, to enhance customer retention and business profitability. The findings underscore the importance of data-driven marketing approaches for customer segmentation and engagement, reinforcing the relevance of the RFM model in modern business environments.
Downloads
References
Aggelis, V., & Christodoulakis, D. (2005, July). Customer clustering using RFM analysis. In Proceedings of the 9th WSEAS International Conference on Computers (p. 2). https://www.academia.edu/download/98742497/497-433.pdf
Birant, D. (2011). Data mining using RFM analysis. In Knowledge-oriented applications in data mining. IntechOpen. https://openresearchlibrary.org/ext/api/media/149979dc-cbb9-414b-9cf0-18d6f3348f7f/assets/external_content.pdf
Blattberg, R. C., Kim, B. D., & Neslin, S. A. (2008). RFM Analysis. In Database Marketing (Vol. 18). Springer, New York, NY. 323–337 https://doi.org/10.1007/978-0-387-72579-6_12
Chang, H. C., & Tsai, H. P. (2011). Group RFM analysis as a novel framework to discover better customer consumption behavior. Expert Systems with Applications, 38(12), 14499-14513. https://doi.org/10.1016/j.eswa.2011.05.034
Christy, A. J., Umamakeswari, A., Priyatharsini, L., & Neyaa, A. (2021). RFM ranking – An effective approach to customer segmentation. Journal of King Saud University - Computer and Information Sciences, 33(10). https://doi.org/10.1016/j.jksuci.2018.09.004
Dursun, A., & Caber, M. (2016). Using data mining techniques for profiling profitable hotel customers: An application of RFM analysis. Tourism Management Perspectives, 18, 153-160. https://doi.org/10.1016/j.tmp.2016.03.001
Hermawan, A., Kahfi, R. A., Surya, E., Aini, U., & Hidayat, R. (2024). Penerapan Metode RFM dengan Python dalam Segmentasi Pelanggan. Jurnal Bisnis Inovatif Dan Digital, 1(3), 92–102. https://doi.org/10.61132/jubid.v1i3.222
Hughes, A. M. (1994). Strategic Database Marketing. Probus Publishing.
Khajvand, M., Zolfaghar, K., Ashoori, S., & Alizadeh, S. (2011). Estimating customer lifetime value based on RFM analysis of customer purchase behavior: Case study. Procedia Computer Science, 3, 57-63. https://doi.org/10.1016/j.procs.2010.12.011
Ma, J. (2022). E-commerce customer segmentation based on RFM model. Lecture Notes in Electrical Engineering, 827, 118. https://doi.org/10.1007/978-981-16-8052-6_118
Monalisa, S., Juniarti, Y., Saputra, E., Muttakin, F., & Ahsyar, T. K. (2023). Customer segmentation with RFM models and demographic variable using DBSCAN algorithm. Telkomnika (Telecommunication Computing Electronics and Control), 21(4). https://doi.org/10.12928/TELKOMNIKA.v21i4.22759
Sabuncu, İ., Türkan, E., & Polat, H. (2020). Customer segmentation and profiling with RFM analysis. Turkish Journal of Marketing, 5(1), 22-36. http://dx.doi.org/10.30685/tujom.v5i1.84
Stone, B., & Jacobs, R. (1988). Successful Direct Marketing Methods. NTC Business Books.
Wan, S., Chen, J., Qi, Z., Gan, W., & Tang, L. (2022). Fast RFM model for customer segmentation. WWW 2022 - Companion Proceedings of the Web Conference 2022. 965 – 972. https://doi.org/10.1145/3487553.3524707
Zamil, A. M. A., & Vasista, T. G. (2021). Customer segmentation using RFM analysis: Realizing through Python implementation. Pacific Business Review International, 13, 11 May 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Maeswara : Jurnal Riset Ilmu Manajemen dan Kewirausahaan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.