Leveraging the RFM Model for Customer Segmentation in a Software-as-a-Service (SaaS) Business Using Python

Authors

  • Andy Hermawan Universitas Indraprasta PGRI Jakarta
  • Nila Rusiardi Jayanti Universitas Indraprasta PGRI Jakarta
  • Aji Saputra Universitas Khairun Jakarta
  • Army Putera Parta Purwadhika Digital School Jakarta
  • Muhammad Abizar Algiffary Thahir Purwadhika Digital School Jakarta
  • Taufiqurrahman Taufiqurrahman Purwadhika Digital School Jakarta

DOI:

https://doi.org/10.61132/maeswara.v2i5.1283

Keywords:

Amazon, AWS, RFM Analysis, SaaS, Segmentation

Abstract

Customer segmentation plays a pivotal role in driving marketing strategies and improving customer retention across various industries. This study explores the application of the RFM (Recency, Frequency, Monetary) model for customer segmentation in a Software-as-a-Service (SaaS) business, using Python for efficient data processing and analysis. By analyzing one year of customer purchase data, we segmented customers into key groups such as "Champions," "Loyal Customers," and "At Risk." The results highlight that targeted discount strategies significantly affect profitability, especially for high-value customer segments. Furthermore, the research builds upon existing methodologies, demonstrating how Python-based implementations streamline RFM analysis and allow for scalable solutions in business contexts, as illustrated in prior works by Hermawan et al. (2024). This study offers actionable recommendations, including tailored discounting, loyalty programs, and personalized engagement strategies, to enhance customer retention and business profitability. The findings underscore the importance of data-driven marketing approaches for customer segmentation and engagement, reinforcing the relevance of the RFM model in modern business environments.

Downloads

Download data is not yet available.

References

Aggelis, V., & Christodoulakis, D. (2005, July). Customer clustering using RFM analysis. In Proceedings of the 9th WSEAS International Conference on Computers (p. 2). https://www.academia.edu/download/98742497/497-433.pdf

Birant, D. (2011). Data mining using RFM analysis. In Knowledge-oriented applications in data mining. IntechOpen. https://openresearchlibrary.org/ext/api/media/149979dc-cbb9-414b-9cf0-18d6f3348f7f/assets/external_content.pdf

Blattberg, R. C., Kim, B. D., & Neslin, S. A. (2008). RFM Analysis. In Database Marketing (Vol. 18). Springer, New York, NY. 323–337 https://doi.org/10.1007/978-0-387-72579-6_12

Chang, H. C., & Tsai, H. P. (2011). Group RFM analysis as a novel framework to discover better customer consumption behavior. Expert Systems with Applications, 38(12), 14499-14513. https://doi.org/10.1016/j.eswa.2011.05.034

Christy, A. J., Umamakeswari, A., Priyatharsini, L., & Neyaa, A. (2021). RFM ranking – An effective approach to customer segmentation. Journal of King Saud University - Computer and Information Sciences, 33(10). https://doi.org/10.1016/j.jksuci.2018.09.004

Dursun, A., & Caber, M. (2016). Using data mining techniques for profiling profitable hotel customers: An application of RFM analysis. Tourism Management Perspectives, 18, 153-160. https://doi.org/10.1016/j.tmp.2016.03.001

Hermawan, A., Kahfi, R. A., Surya, E., Aini, U., & Hidayat, R. (2024). Penerapan Metode RFM dengan Python dalam Segmentasi Pelanggan. Jurnal Bisnis Inovatif Dan Digital, 1(3), 92–102. https://doi.org/10.61132/jubid.v1i3.222

Hughes, A. M. (1994). Strategic Database Marketing. Probus Publishing.

Khajvand, M., Zolfaghar, K., Ashoori, S., & Alizadeh, S. (2011). Estimating customer lifetime value based on RFM analysis of customer purchase behavior: Case study. Procedia Computer Science, 3, 57-63. https://doi.org/10.1016/j.procs.2010.12.011

Ma, J. (2022). E-commerce customer segmentation based on RFM model. Lecture Notes in Electrical Engineering, 827, 118. https://doi.org/10.1007/978-981-16-8052-6_118

Monalisa, S., Juniarti, Y., Saputra, E., Muttakin, F., & Ahsyar, T. K. (2023). Customer segmentation with RFM models and demographic variable using DBSCAN algorithm. Telkomnika (Telecommunication Computing Electronics and Control), 21(4). https://doi.org/10.12928/TELKOMNIKA.v21i4.22759

Sabuncu, İ., Türkan, E., & Polat, H. (2020). Customer segmentation and profiling with RFM analysis. Turkish Journal of Marketing, 5(1), 22-36. http://dx.doi.org/10.30685/tujom.v5i1.84

Stone, B., & Jacobs, R. (1988). Successful Direct Marketing Methods. NTC Business Books.

Wan, S., Chen, J., Qi, Z., Gan, W., & Tang, L. (2022). Fast RFM model for customer segmentation. WWW 2022 - Companion Proceedings of the Web Conference 2022. 965 – 972. https://doi.org/10.1145/3487553.3524707

Zamil, A. M. A., & Vasista, T. G. (2021). Customer segmentation using RFM analysis: Realizing through Python implementation. Pacific Business Review International, 13, 11 May 2021.

Downloads

Published

2024-10-08

How to Cite

Andy Hermawan, Nila Rusiardi Jayanti, Aji Saputra, Army Putera Parta, Muhammad Abizar Algiffary Thahir, & Taufiqurrahman Taufiqurrahman. (2024). Leveraging the RFM Model for Customer Segmentation in a Software-as-a-Service (SaaS) Business Using Python. Maeswara : Jurnal Riset Ilmu Manajemen Dan Kewirausahaan, 2(5), 77–89. https://doi.org/10.61132/maeswara.v2i5.1283

Similar Articles

<< < 10 11 12 13 14 15 

You may also start an advanced similarity search for this article.